Divalent ion uptake of heavy metal cations by (aluminum + alkali metals) – substituted synthetic 1.1 nm-tobermorites

E. I. AL-WAKEEL, S. A. EL-KORASHY*

Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt

S. A. EL-HEMALY National Research Center, Dokki, Cairo, Egypt

M. A. RIZK

Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt

The reactions of Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Pb^{2+} , Cd^{2+} or Hg^{2+} synthetic (AI + alkali metal) – substituted tobermorites were studied. Among these cations, Mn^{2+} , Fe^{2+} , Cu^{2+} , Zn^{2+} , pb^{2+} and Hg^{2+} appears to exchange with outer planar surface of Ca^{2+} of tobermorites due to the break down of structural Ca-O bonds, in addition to the substituted alkali metals in the structure. But it is difficult to delineate the extent of this reaction from the precipitation of the concerned ions as carbonates, hydroxy carbonates, hydroxy nitrates or hydroxides. The uptake of metal ions by these solids led to their amorphization in many cases due to the partial exchange and the acidic nature of metal solutions, and hence their reactions are not strictly analogous to cation exchange in zeolites and clays. The order of ion uptake has been found in the following order: $Fe^{2+} > Ni^{2+} > Co^{2+} > Zn^{2+} > Cu^{2+} > Mn^{2+} > Hg^{2+} > Cd^{2+} > pb^{2+}$. (c) 2001 Kluwer Academic Publishers

1. Introduction

The tobermorite group of hydrated calcium silicates includes a variety of phases with different crystallinity and variations in chemical composition. Of these, tobermorite $[Ca_5Si_6O_{16} (OH)_2 \cdot 4H_2O]$ is referred to as 1.13 nm-tobermorite based on the thickness of the elementary layers in its structure. The crystal structure of 1.13 mn-tobermorite was first investigated by Megaw and Kelsey [1] and subsequently by Hamid [2]. It's structure is also similar to that in 2:1 clay minerals [3] and its basic layer consists of a central sheet of CaO₂ which is sandwiched by rows of $SiO_2(OH)_2$ tetrahedra that are linked into chain running parallel to the b-axis direction. The presence of ≡Si-O-Si≡ bridges between the chains has been proposed by several authors [4, 5] and unambiguously confirmed by ²⁹Si MASNMR Spectroscopy [6, 7].

The presence of Al^{3+} -and/or alkali ions is known to be among the most influential factors with regard to tobermorite formation and its final silicate anion structure [8]. Tobermorites substituted with $[Al^{3+} + Na^+]$ for Si⁴⁺ have been discovered [9–11] to show cation exchange and selectivity for some catoins. The Al^{3+} is isomorphously substituted for Si⁴⁺ in tetrahedral sites and alkali metal ions such as Na⁺ are situated in the interlayer [12] and compensate the deficient charge. The substituted tobermorites constitute a new family of inorganic ion exchangers and are characterized by their high selectivity for Cs cations [10], the Cs^+ selectively exchanging with Na^+ ions which are located in the interlayer position [12].

It was found [13] that tobermorites synthesized from $Ca(OH)_2$ and fly ash waste materials exhibit Cs and Sr selectivity than those synthesized from Ca(OH) and SiO_2 under the same conditions. This is due to more extensive Al^{3+} incorporation with fly ash. In a similar way, it was reported [14] that Al-substituted tobermorite as an additive to OPC was found to fix about 77% of Sr²⁺ in cement matrix against 17% fixation in the OPC.

The objective of this research was to determine the exchange property of (aluminum + alkali metals)substituted synthetic 1.1 nm-tobermorires toward some 3d-transition metals and toxic cations from the viewpoint of cation separation (purification) chemistry. This study was undertaken in order to fully realize potentialities of these exchangers in the above research filed and especially in hazardous waste stream and nuclear waste disposal areas.

2. Experimental and methods

2.1. Preparation of (Al³⁺ + alkali metals) – substituted tobermorites

Tobermorites of different chemical composition were prepared by mixing stoichiometric amounts of CaO and

^{*} Author to whom all correspondence should be addressed.

 SiO_2 (below 10 μ). 15 mol% of SiO_2 was replaced by Al (OH)₃ and the mixed powder was added to 20 fold of its weight of either deionized water or 1 M solution of NaOH, KOH or 0.5 solution of LiOH, and stirred for 30 minutes in a 250 ml beaker. The contents of the beaker were transferred to teflon coated stainless steal autoclave bombs and heating the bombs at 180°C for 20 h. Hydrothermal treatment of sodium meta-silicate and AlCl₃. 6H₂O was also used instead of NaOH or Al(OH)₃ for 96 h in some runs. After the autoclaves were cooled, the reaction products were mixed in the autoclaves and then centrifuged to separate the solid and solution phases. The solids were washed with deionized water to remove soluble components. The solids products were dried at 90°C for 3 h and then subjected for chemical analysis and powder X-ray diffraction (XRD) analysis using an x-ray diffractometer with Ni-filtered Cu K α radiation.

2.2. Total cation-exchange-capacity (CEC) determination

The CEC was determined by suing the method reported previously [15]. The procedure can be briefly describe as follows: A portion of tobermorite (50 mg) was washed twice (equilibration time was 30 min. for each washing) with KCl to saturate all the exchange sites with K^+ , followed by five washings with 10^{-2} N KCl to remove the excess of KCl to prevent hydrolysis. The K⁺ ions from the exchange sites were displaced by four washings (30 min. equilibration time per washing) with 0.2 N CsCl. The solution was collected and analyzed for K⁺ by AES and the total CEC was determined.

2.3. Cation reaction experiments

The divalent metal cations reactions were conducted following the standard procedure reported in [16]. 10 mg of each solid was equilibrated for different periods in glass vials with 5 ml nitrate, sulphate or chloride solution of 100, 200, 500 or 1000 mg/L of Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , pb^{2+} , Cd^{2+} or Hg^{2+} . Nitrate anions were used for pb^{2+} , Cu^{2+} and Hg^{2+} , sulphate anions for Zn^{2+} , Co^{2+} , Ni^{2+} , Mn^{2+} and Fe^{2+} and chloride anions for Cd^{2+} . After different periods of equilibration the solutions and the solid phases in the glass vials were separated by centrifugation and a part of the supernatant solution was collected for chemical analysis using atomic absorption spectroscopy (AAS). The pH of the equilibrium solution for some reactions in the glass vials was immediately measured.

The changes in the crystal structure of some solid phases upon the reaction was also followed by X-ray diffraction and IR-spectroscopy techniques.

3. Results and discussion

Table I Shows the chemical composition and the cation exchange capacity of (aluminum + alkali metal)-substituted tobermorites, while the change in pH-value upon the reaction are given in Table II.

Results of CEC show that (Al + alkali metals) substituted tobermorites reveal higher values than the unsubstituted one by about 4-5 times. They also possess approximate by the same CEC values, except in case of (Al + Na) substituted-tobermorite prepared from sodium meta-silicate and AlCl₃·6H₂O (Table I). The higher CEC in (Al + K) tobermorite compared to the corresponding (Al + Na) and/or (Al + Li) samples prepared at the same condition may be attributed to the fact that K⁺ is less hydrated than Na⁺ or Li⁺, and hence it can be easily substituted.

The pH-values of the initial cation metal solutions increased on reaction with the solids and also with increasing the reaction time. This could be attributed to the release of Ca^{2+} and/or alkali metal ions from the lattice structure of the solid in solution to from hydrated calcium or alkali metal ions during the course of reaction.

Results of the reaction of nine heavy metals with Ca²⁺ and/or alkali metals in tobermorite samples are presented in Figs 1-5 and Tables III-VII. In these reactions the exchange of $Ca^{2+} \Leftrightarrow M^{2+}$ in most cases seem to be non-stoichiometric (the reason will be discussed latter). But, generally the metal ions taken up by substituted solids are higher than in unsubstituted one as a function of time Figs 1-5 or concentration functions Tables III-VII. In this respect, Fe²⁺, Co²⁺ and Ni²⁺ metal ion uptake by the solids were found to be higher than the other metals. Higher meq of these ions were taken up compared to the amounts of meq of Ca²⁺ released. The exchange reaction in substituted tobermorite was postulated [11, 17, 18] to take place from edge and planar surface sites and apparently from the interlayer Ca²⁺ sites, since tobermorite has the octahedral Ca (5) and Ca (6) which are very distorted

 TABLE II Change in pH-values of initial metal ion solution

 (1000 ppm) due to the exchange reaction with some solids

	Metal ion	pH of	pH after the reaction at:				
Solid phase	solution	solution	2 h	360 h			
(Al + Na) sub	Ni	6.67	7.55	8.36			
Tobermorite	Fe	2.87	4.33	5.19			
	Zn	2.71	6.48	6.76			
	Hg	3.59	7.74	8.64			
(Al+Li) sub	Co	6.56	7.75	8.65			
Tobermorite	Mn	4.33	7.61	7.83			

TABLE I Chemical composition and cation exchange capacity (CEC) of the synthesized solids

Solid phase	Chemical composition	CEC meq/100 gm
Unsubstituted-tobermorite*	Ca ₅ Si _{5.2} O _{14.5} (OH) ₂ (3.5)H ₂ O	35.5
15 mol% (Al + Li) subtobermorite**	Ca5Li0.95Al0.95Si5.27O16.09(OH)23.7H2O	141.8
15 mol% (Al + K.) subtobermorite**	Ca ₅ K _{0.9} Al _{0.9} Si _{5.1} O ₁₆ (OH) ₂ . 4.5H ₂ O	151.9
15 mol% (Al + Na) subtobermorite**	Ca ₅ Na _{0.9} Al _{0.9} Si _{5.1} O ₁₆ (OH) ₂ 4.06H ₂ O	140.4
15 mol% (Al + Na) subtobermorite***	Ca5Na0.6Al0.6Si5.4O16(OH)2. 5.02H2O	179.9

*Prepared for 168 h. **Prepared for 20 h. ***Prepared from solid. meta-silicate and AlCl₃-6H₂O for 96 h.

Figure 1 (A) Uptake of metal ions from 1000 ppm aqueous solution by unsub.-tobermorite, (B) Amount of Ca ions released from unsub.-tobermorite.

Figure 2 (A) Uptake of metal ions from 1000 ppm aqueous solution by 15% (Al + Li) substituted tobermorite, (B) Amount of Ca ions released from 15% (Al + Li) substituted tobermorite.

Figure 3 (A) Uptake of metal ions from 1000 ppm aqueous solution by 15% (Al + Na) substituted tobermorite, (B) Amount of Ca ions released from 15% (Al + Na) substituted tobermorite.

Figure 4 (A) Uptake of metal ions from 1000 ppm aqueous solution by 15% (Al + K) substituted tobermorite, (B) Amount of Ca ions released from 15% (Al + K) substituted tobermorite.

Figure 5 (A)Uptake of metal ions from 1000 ppm aqueous solution by 15% (Al + Na) substituted tobermorite, (B) Amount of Ca ions released from 15% (Al + Na) substituted tobermorite. (Prepared from Sod. meta silicate and AlCl_{3.6}H₂O) Ion metal \Box Mn; \blacklozenge Fe; \diamondsuit Co; # Ni; + Cu; \triangle Zn; \blacklozenge Pb; \bigcirc Cd; \oiint Hg.

Figure 6 A three-dimensional view of anomalous 1.13 nm-tobermorite with Ca/Si = 0.83 molar ratio based on Hamids's⁽²⁾ and ²⁷Al and ²⁹Si MASNMR data presented by Komarneni *et al.* [23] (The dotted circles indicate structural Ca^{2+} ions).

and the Ca-O interaction is weak Fig. (6). Hence, they are expected to be exchangeable. On the other hand, the exchange of these ions are inhibited by their lager hydrated radii, so that it has a low CEC value. The measured value of CEC for unsubstituted-tobermorite in the present results agreed with the published data in literature [18, 19]. But in case of (Al + alkali) substituted-tobermorites the higher CEC values are due to the presence of alkali metals in additional to Al^{3+} . These values are located in the range between the CEC of clays and zeolites [20].

The exchange in this case appears to be a two steps process, first the alkali ion $(Li^+, Na^+ \text{ or } K^+)$ are rapidly exchanged and then the Ca^{2+} ions are exchanged, i.e. the available exchange sites increase and hence (Al + alkali) substituted-tobermorites, achieved higher CEC compared to the unsubstituted. Also, it was reported [12] that, the \equiv Si-O-Si \equiv bridges between layers present in substituted tobermorites, stabilize the structure and create zeolite-like cavities formed by eight (Si + Al) atoms (Fig. 6). It is difficult to draw a clear sharp picture about the real mechanism of this exchange reaction between the solids and the metal ions, due to the precipitation of the ions such as: Fe²⁺, Mn²⁺, Cu²⁺,

Figure 7 X-ray diffractograms of (Li + Al) Substituted-tobermorite reacted with 1000 ppm of Mn^{2+} , Fe^{2+} , Co^{2+} and Cd^{2+} solution for 2 and 360 hrs. (O = Tobermorite, \bullet = Otavite (CdCO₃), \triangle = Rhodochrosite (MnCO₃).

Zn²⁺, Cd²⁺, pb²⁺ and Hg²⁺ as hydroxides, hydroxy carbonates or carbonate (as detect by XRD, Figs 7–9) during the reaction. The contents of these phases have been found to increase with increasing time of reaction and/or their initial concentrations. On the other hand, the reaction of Co^{2+} or Ni²⁺ did not lead to the formation of either hydroxides, hydroxy carbonates or even carbonates as cleared from XRD data; but a coloured precipitates on the surface of tobermorite solids was noted and their solutions became approximately colorless. This means that these precipitates may be in amorphous state and therefore they can not detected by XRD.

The reaction of Fe^{2+} led to a loss of crystallinity of the solids completely, even after 2 h of reaction, while in case of Ni²⁺, Co²⁺, or Cu²⁺, the crystallinity was partially lost at the same time of reaction and completely

		M/Ca Molar ratio	1.93	1.31	1.09	1.51	1.09	1.67	1.22	0.58	1.84	
		* ² B3 Of Ca ²⁺	0.51	9.44	1.60	8.95	1.53	1.53	1.67	2.77	4.16	
	1000	Nt. % of Mt ²⁺ uptaken	0.74	9.47	1.41	10.92	1.46	2.29	5.80	2.47	21.09	
		Ca ²⁺ release (meq/100mg)	7.0	129.7	22	123	21	21	23	38	57.2	
		Ma ²⁺ uptake (m001/psm)	13.50	169.7	24	186	23	35	28	22	105	
		nstoM gJ/M vatio	2.17	0.27	1.44	0.98	0.95	2.60	1.36	0.55	2.14	
		⁺² RO SI Ca ²⁺ ¥eleased	0.55	30.53	1.30	9.25	1.45	1.09	1.38	2.11	3.47	
(mc	500	No % .1W M ²⁺ W	1.79	12.57	3.06	14.68	2.41	4.58	10.77	3.59	40.98	
M ²⁺ (pl		Ca ²⁺ release (meq/100mg)	7.5	419.3	18	127	19.9	15	19	29	47.7	
on of l		M ²⁺ uptake M ²⁺ uptake	16.3	114.3	26	125	19	39	26	16	102	
entrati	200	M/Ca Molar ratio	0.62	1.33	2.54	0.85	0.94	2.33	1.14	0.68	0.52	
al conc		*cleased released	0.72	4.60	0:95	6.55	1.31	1.09	1.02	1.38	1.53	
Initi		Mt. % of Wt. % of	5.52	23.57	9.22	22.39	5.40	11.45	16.58	7.31	10.94	
		Ca ²⁺ release (med/100mg)	9.90	63.2	13	06	18	15	14	19	21	
		(meq/100mg) M ²⁺ uptake	20.1	84.5	33	76.3	17	35	16	13	10.9	
		M/Ca Molar ratio	0.62	1.44	6.0	1.02	<u> 0.95</u>	2.15	1.23	0.55	1.34	
		% of Ca ²⁺	0.31	2.58	0.14	8.59	1.38	0.95	0.95	1.06	1.38	
	100	10 % 'JM Mi % JM	1.43	28.27	7.07	10.91	11.43	18.31	33.16	8.99	12.85	
			sza ²⁺ release (2m001/p9mg)	4.20	35.5	2.0	118	19	13	13	14.6	19
			ədrəqu ^{+s} M (2m001\pəm)	2.60	51.2	12	120.8	18	28	16	~	6.4
		Metal ion (M ²⁺)	Mn	Fe	Co	ï	Cu	Zn	Pb	Cd	Hg	

TABLE III Mass balance data of M^{2+} taken up by unsubstituted tobermorite and the released Ca²⁺ in solution after 2 h (reaction time)

		M/Ca Molar ratio	0.61	1.03	1.17	1.57	1.8.1	1.13	0.84	1.53	2.20
1000		⁺¹ EO 10 % % of Ca ²⁺	10.03	90.60	17.03	26.60	14.37	27.06	10.94	12.96	14.77
	1000	N, % of M ^{**} uptaken	4.39	68.97	15.49	32.43	21.78	26.36	25.07	28.66	85.98
		Ca ²⁺ release (meq/100mg)	132	1192	224	350	189	356	144	167	194.2
		əAstqu ^{+s} M (gm001\pəm)	80.0	1236	263	551	343	403	121	255	428
		nstoM gJ/M vrstio	1.17	0.85	1.21	1.07	2.13	1.07	0.89	1.55	1.09
		released % of Ca ²⁺	10.9	47.28	13.45	17.48	7.22	20.29	8.59	9.65	5.04
pm)	500	10 % .JW M ⁺⁵ M	18.45	59.32	25.33	28.88	25.78	37.93	41.58	44.28	29.13
M ²⁺ (p		Ca ²⁺ release (meq/100mg)	144	622	177	230	95	271	113	127	66.3
Initial concentration of N		ədaru ^{+s} M (2m001/pəm)	168	531.6	215	246	203	290	101	197	72.5
		M\Ca Molar ratio	1.57	1.22	2.11	1.06	2.29	1.53	1.01	1.30	1.40
		released % of Ca ²²⁺	9.5	15.58	11.71	15.96	6,76	10.87	6.76	7.98	0.57
	200	Wf, % 0f Wf, % 0f	53.8	70.08	95.71	65.16	64.77	71.61	93.24	76.99	10.54
		Ca ²⁺ release (meq/100mg)	125	205	154	210	89	143	89	105	7.5
		alatqu ^{+s} M (m001/pam)	196	251.2	325	222	204	219	06	137	10.5
		M/Ca Molar ratio	2.15	1.09	3.16	16.1	4.42	1.73	0.88	2.42	1.44
		% of Ca ²⁺	6.30	7.76	4.03	6.69	4.94	6.38	3.95	2.74	0.27
	100	Wt. % of M ²⁺ uptaken	7.76	62.66	98.95	98.62	69 .66	94.43	95.31	97.79	10.45
		Sa ²⁺ release (m001/p9mg)	83	102.1	53	88	65	84	52	36	3.60
		ədriqu ^{+s} M (2m001\pəm)	178	112.3	168	168	157	145	46	87	5.20
		Metal ion (M ²⁺)	Mn	Fe	Co	Ni	Cu	Zn	$\mathbf{P}\mathbf{b}$	Cd	Hg

TABLE IV Mass balance data of M^{2+} taken up by (Al+Li) substituted tobermorite and the released Ca^{2+} solution after 2 h (reaction time)

		M/Ca Molar ratio	0.76	1.05	0.88	1.33	1.77	1.15	0.72	1.69	1.63	
		released % of Ca ²⁺	10.90	84.6	22.56	23.68	14.66	29.39	10.83	10.83	19.35	
	1000	10 % ,1W M ²⁺ W	6.04	66.23	15.49	24.65	21.97	29.43	21.55	27.43	84.10	
		staster (medease (med/100mg)	145	1126	300	315	195	391	144	144	257.4	
		aystyu ^{+s} ty (gm001\p9m)	110.0	1187	263	420	346	450	104	244	418.6	
		nsloM &J/M ratio	0.95	1.05	1.13	1.22	1.85	1.27	0.66	1.81	0.95	
		% of Ca ²⁺ released	10.90	43.4	18.42	18.65	6.84	17.37	6.69	7.22	9.42	
m)	500	uəyvidn +2M M -2M	15.04	76.43	32.75	35.68	21.33	38.32	35.22	39.12	47.81	
ntration of M ²⁺ (ppn	2	Ca ²⁺ release (meq/100mg)	145	578	245	248	16	231	129	69	125.3	
		эявэди ''М (gm001\рэm)	137	604.2	278	304	168	293	85	174	119	
		M/Ca Molar ratio	1.12	1.05	1.63	1.28	2.22	1.21	0.68	1.06	0.03	
conce	200	released	12.18	15.11	14.89	16.76	6.69	13.83	8.65	6.77	2.61	
Initial		10 %	96.61	59.42	94.83	33.65	54.14	72.92	81.84	53.39	1.20	
		(2m001/psm)	126 4	201	861	223	89	184	115	6	34.70	
		(gm001/psm)	182	213	322	285	202	223	79	95	1:2	
		M ²⁺ Intelo	1.46	1.06	2.05	4.69	1.69	1.47	0.67	1.37	0.14	
		Lelensed RO 10 %	3.49	5.94	5.94	2.71	5.99	5.99	5.19	4.66	0.60	
	00	10 ocvv M ¹⁺¹ uptaken	0.58 8	4.96 (5.24	9.2	69.6	9.59	5.31	5.54	2.20	
	1	1	(Sm001/pam)	13 9	2.3 5.	79 9.	36 5	93 9	93 8	6 69	62 9	8.0
				олинда —,, (3m001\pэm) ээвэгэд ⁺² в ⁻)	65 1	8.5 9	51.7	69	157	137	46	85
		ədrau +5M		6	16	1	1	1	,		-	
		Meta ion (M ²⁺)	Mn	Fe	C	ïZ	Cu	Zn	Pb	Cd	Hg	

TABLE V Mass balance data of M^{2+} taken up by (Al+Na) substituted to bermorite and the released Ca^{2+} solution after 2 h (reaction time)

		M/Ca Molar ratio	0.94	1.05	1.58	2.31	3.33	1.08	0.77	2.17	2.45
		× of Ca ²⁺ v of Ca ²⁺	6.63	68.89	15.18	15.18	7.02	41.33	17.69	9.53	12.98
	1000	10 % .1W M ²⁺ M	4.50	53.02	18.55	27.0	19.43	38.32	37.09	30.57	83.78
		Ca ²⁺ release (meq/100mg)	87	903.3	199	199	92	542	232	125	170.2
		ə ⁴ stqu ⁺¹ 1Å (gm001\p9m)	82	950.2	315	460	306	586	179	272	417
		M/Ca Molar ratio	1.96	1.07	2.40	1.96	3.48	1.09	0.72	2.52	3.8
		% of Ca ²⁺	7.02	22.42	9.61	10.68	5.79	25.09	18.23	6.94	2.83
m)	500	nsisiqu ^{+s} M W	19.87	35.04	35.69	32.28	33.65	46.69	71.69	51.48	56.65
1 ²⁺ (pp		Ca ²⁺ release (meq/100mg)	92	294	126	140	76	329	239	16	37.1
n of N		948140 ⁺² M M ⁺² M (2008)	181	314	303	275	265	357	173	229	141
entratio		MOR MOIRT Vatio	2.35	1.06	1.07	2.46	3.07	1.19	0.71	2.02	5.48
l conce	200	% ol Ca ²⁺	6.41	13.19	17.23	5.41	6.71	9.23	9.61	5.57	0.13
Initia		n9483qu ⁺² M W, M	54.35	51.34	71.86	51.36	85.71	47.08	93.24	83.18	9.64
		searlo ^{1 +1} RD (gm001/pomg)	84	173	226	71	88	121	126	73	1.75
		(gm001/p5m) M ⁴⁴ (gm001/p5m)	198	184	244	175	270	144	90	148	9.6
		M/Ca Molar ratio	2.88	1.13	8.15	5.45	3.49	1.34	0.37	5.73	12.5
		released % of Ca ²⁺	4.12	4.48	1.53	2.36	3.43	7.78	9.76	1.14	0.015
	100	10 % '1M M ²⁺ W	85.64	37.22	96.01	99.20	99.67	89.59	97.38	96.67	5.02
		(meq/100mg) (med/100mg)	54	28.8	20	31	45	102	128	15	0.2
		ədatqu ^{+s} M (2m001\pəm)	156	66.7	163	169	157	137	47	86	2.5
		Metal ion (M ²⁺)	Mn	Fe	Co	Ni	Cu	Zn	Pb	Cd	Hg

TABLE VI Mass balance data of M^{2+} taken up by (Al + Na) substituted tobermorite (prepared from Sodium meta-silicate and AlCl₃·6H₂O) and the released Ca²⁺ solution after 2 h (reaction time)

		M/Ca Molar ratio	0.19	1.04	0.68	2.35	0.91	1.05	0.77	2.80	1.36				
		⁺² B3 Of Ca ²⁺	3.96	86.18	11.96	8.58	7.30	27.80	6.06	4.35	12.14				
	1000	10 % 'M M ²⁺ W	0.52	64.58	618	15.26	5.46	24.52	12.43	17.65	42.79				
		Ca ²⁺ release (med/l0mg)	51	1110	154	110.5	94	358	78	56	156.3				
		ədrayu ^{+s} M (gm001\pəm)	9.5	1157	105	260	86	375	60	157	213				
		nstoM gS/M ratio	0.48	1.13	1.10	0.87	1.88	1.05	0.69	3.57	1.02				
		⁺² R3 of Ca ²⁺ Volensed	3.42	33	11.18	1.18	3.42	15.61	5.75	3.11	11.16				
(mc	500	n9%.1W M ²⁺⁵ W	2.31	53.64	18.73	14.67	10.54	27.59	21.13	32.15	58.66				
М ²⁺ (рţ		erelease (meq/ ¹² release (meq/)	44	425	144	144	44	201	74	40	143.7				
on of N		M ²⁺ uptake (gm001/p9m)	21	480.7	159	125	83	211	51	143	146				
entrati	200	M/Ca Molar ratio	1.06	1.01	2.05	0.88	2.25	1.64	16.0	0.42	0.36				
ul conc		keleased % of Ca ²⁺	5.13	15.63	7.68	9.16	2.38	6.37	4.35	2.56	4.78				
Initia		W: % 01 W: % 01	19.49	56.91	59.78	30.43	21.91	88.29	52.84	64.07	2.21				
		Ca ²⁺ release (med/100mg)	66	201.2	66	118	30.6	82	56	33	61.6				
		M ²⁺ uptake M ²⁺ (gm001/pomg)	71	204	203	103.7	69	135	51	114	2.2				
		M/Ca Molar ratio	3.59	1.27	1.79	0.90	2.25	1.64	1.26	2.23	0.03				
		k of Ca ²⁺	2.10	5.32	6.76	8.85	2.45	6.37	2.95	2.33	1.90				
	100	Wt. % of M ²⁺ uptaken	53.25	48.83	90.71	58.58	45.09	88.29	99.46	75.31	1.61				
						erelease (medverse) (medv10mg)	27	68.5	86	110.5	31.5	82	38	30	24.5
			ədrəqu ^{+s} M (2m001\pəm)	76	87.5	154	99.8	11	135	48	67	0.80			
		Metal ion (M ²⁺)	Mn	Fe	Co	Ni	Cu	Zn	Pb	Cd	Hg				

TABLE VII Mass balance data of M^{2+} taken up by (Al+K) substituted-tobermorite and the released Ca²⁺ in solution after 2 h (reaction time)

Figure 8 X-ray diffractograms of (Na + AI) substituted-tobermorite reacted with 1000 ppm solutions of for Ni^{2+} , Cu^{2+} , Zn^{2+} and Hg^{2+} for 2 and 360 hrs. (O = Tobermorite, \blacktriangle = Gerhardite ($Cu_2(OH)_3(NO_3) \blacklozenge$ = Rosasite ($ZnCO_3(OH)_2$), O = HgCO.2HgO).

Figure 9 X-ray diffractograms of (Na + Al) substituted-tobermorite* reacted with 1000 ppm of pb^{2+} solution for 2 and 360 hrs. *Prepared from sod. meta silicate and AlCl₃.6H₂O (O = Tobermorite, \Box = Hydrocerussite (pb₃(CO₃)₂(OH)₂).

after 360 h i.e. led to amorphization. The crystallinity of the exchangers also does not completely remain intact i.e., poor crystallinity after the reaction with Mn^{2+} , Zn^{2+} , pb^{2+} , Cd^{2+} or Hg^{2+} . This is obvious from the decrease in relative intensities of d-spacing at 7.8 (2 θ), 16 (2 θ), 29.9 (2 θ) and 31.8 (2 θ) with respect to the reference materials. This was also reflected in the infrared spectral (Fig. 10). The most intense absorption band of tobermorite decreased, especially those located at 3500, 1450, 1060, 976 and 459 cm⁻¹.

The complete loss in crystallinity of the solids may be attributed mainly, to the acidic nature of the initial solutions (Table II). It was reported that [21] on reaction of tobermorite or xonotlite with Co^{2+} or Ni^{2+} partial Ca^{2+} exchange by Ni^{2+} or Co^{2+} did not lead to a loss of all crystallinity, while the total exchange led to

Figure 10 Change in relative intensities of infrared spectra bands of synthetic (Al + Na) substituted-tobermorite on reaction with Fe^{2+} , Ni^{2+} , Cu^{2+} and pb^{2+} solution for 360 h.

its amorphization. But calcium silicate hydrates like tobermorites have a clearly defined crystalline from, their lattices are impure and contain an assortment of ions in solid solution [22]. This indicates that there is a certain basic stability of these crystalline structure in being able to accommodate the metal ions from the solution and still retain their basic crystalline from. It was suggested that [16–19] the metal ion uptake was primarily due to the breaking of Ca-O bonds from layered structure (Fig. 6) and this led to poor crystallinity of the solid and not amorphization even after 15-days from equilibrium. This behaviour was also noted in cases of Mn^{2+} , Zn^{2+} , pb^{2+} and Cd^{2+} (Figs 7–9).

The reaction of substituted tobermorites with Mn^{2+} , Fe^{2+} , Cu^{2+} , Zn^{2+} , pb^{2+} , Cd^{2+} , and Hg^{2+} leads to precipitation of rhodochrosite [MnCO₃], goethite [FeO(OH)₃], gerhardite [Cu₂ (OH)₃ NO₃], rosasite [Zn₂CO₃(OH)₂], hydrocerussite [pb₃(CO₃)₂ (OH)₂] and [HgCO-2HgO] phases, respectively, as shown in XRD patterns (Figs 7–9). Precipitation of such phases requires a relatively basic medium. This was achieved from the liberation of hydrated Ca²⁺ and/or alkali metal ions from the lattice of the solids and this rises the pH-value (Table II).

Ca²⁺-ions in solutions resulted from the partial exchange and partial hydrolysis of solid by acidic nature of metal ion solution. The first (Ca²⁺ \Leftrightarrow M²⁺) may take place from the planar surface or edges of the solid. In this respect Komarneni, *et al.* [16] showed that by TEM and EDS, Ni was detected at the edge but not in the core on the reaction of tobermorite crystal with an uptake of 2.7 meq/Ni²⁺/g. Their results indicated that the mechanism of reaction takes place from edge to core and the partial replacement led to amorphizations of the crystals in the rim only while almost complete replacement led to total amorphization. Precipitation of the previous mentioned phases during the reaction, will hinder, the complete exchange process and hence the ion uptake from solutions are mainly due to the immobilization (through the precipitation) and partially due to exchange $Ca^{2+} \Leftrightarrow M^{2+}$. Extra Ca^{2+} due to solid hydrolysis and precipitation of metal ions are responsible for the non-stoichiometric results which were obtained (Tables III–VII). Thus precipitation may be originated from hydrolysis of metal salt solution followed by carbonation.

The maximum ion uptake or Ca²⁺-release have been detected in case of Fe²⁺ which could be related to the partial hydrolysis of the solid, due to the acidic nature of Fe²⁺ solution (pH = 2.87) and the basic nature of tobermorites, in spite of the fact that the ionic radii of Fe²⁺, Co²⁺ or Ni²⁺ are approximately the same. The uptake of ions has been found to be in the following order: Fe²⁺ > Ni²⁺ > Co²⁺ > Zn²⁺ > Cu²⁺ > Mn²⁺ > Hg²⁺ > Cd²⁺ > pb²⁺.

In calcium silicate frame work, it was reported that [11, 16, 17, 19] the ion uptake may arise as a result of the following steps: i- Broken bonds from edges, ii- Outer planar surface of the solid crystals, iii- Interlaver inclusion of cations for charge balance or iv- Reaction with structural calcium. It is not necessary that all these steps operate in any exchange reaction but at least one of them occurs during the exchange reaction. Komarneni et al. [16] considered that the term of exchange between solid and heavy metal solutions are due to net chemical change from solution and solid. But in some cases, the structure of the solid will change often from crystalline to amorphous (as in case of : Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} or Cu^{2+}) and hence the reaction of calcium silicate hydrate is not strictly analogous to traditional base exchange in zeolites and clays although in the latter there are minor structural changes with exchange of cations. Hereinafter, this phenomenon may refer to mixed effect between partial exchange and immobilization (precipitation), the latter is a major part of ion uptake where the cation uptake by the solids in some cases is greater than their CEC values. The partial exchange (Ca²⁺ \Leftrightarrow M²⁺) and partial hydrolysis of the solids by acidic nature of the metal solutions led to a change in the molecular structure of some substitutedtobermorites, i.e. became amorphous.

References

- 1. H. D. MEGAW and C. H. KELSEY, *Nature (London)* 177 (1956) 390.
- 2. S. A. HAMID, Kristallogr. Z 154 (1981) 189.
- 3. H. F. W. TAYLOR and J. W. HOWISON, *Clay Mineral Bull.* **31** (1956) 98.
- H. F. W. TAYLOR, in Proceeding of the Inter. Congr. On the Chem. of Cem, edited by A. J. Stroyized (Moscow, 1974) pp. 3–46.
- 5. S. A. S. EL-HEMALY, T. MITSUDA and H. F. W. TAYLOR, *Cem. Concr. Res.* **7** (1977) 429.
- W. WIEKER, A. R. GIMMER, M. WINKER, A. MAGI, M. TARMAK and E. LIPPMAA, *ibid.* 12 (1982) 333.
- S. KOMARNENI, R. ROY, D. M. ROY, C. A. FYLE,
 G. J. KENNEDY and A. A. BOTHNER, *J. Mater. Sci.* 20 (1985) 4209.
- R. GARBROVSEK, B. KURBUS, D. MULLER and W. WIEKER, Cem. Concr. Res. 23 (1993) 321.
- 9. S. KOMARNENI, D. M. ROY and R. ROY, *ibid.* **12** (1982) 773.
- 10. KOMARNENI and D. M. ROY, Science 221 (1983) 647.
- 11. M. TSUJI and S. KOMARNENI, J. Mater. Res. 4(3) (1989) 648.
- 12. S. KOMARNENI and S. GUGGENHEIM, *Min. Mag.* **52** (1988) 371.
- MA WEIPING, W. P. BROWN and S. KOMARNENI, J. Amer. Ceram. Soc. 79(6) (1996) 1707.
- O. P. SHRIVASTAVA and T. VERMA, Adv. Chem. Based Mater. 2(3) (1995) 119.
- 15. O. P. SHRIVASTAVA and S. KOMARNENI, *Chem. Concer. Res.* **24**(3) (1994) 273.
- 16. S. KOMARNENI, E. BREVAL, D. M. ROY and R. ROY, *ibid.* **18** (1988) 204.
- 17. S. A. EL-KORASHY, MONATSCHEFTE FÜR CHEMIE, **128** (1997) 559.
- S. A. EL-KOSASHY and E. I. EL-WAKEEL, *Egypt*, J. Chem. 42(3) (1999) 237.
- 19. O. P. SHRIVASTAVA, S. KOMARNENI and E. BREVAL, *Cem. Concr. Res.* 21 (1991) 83.
- E. LIPPMAA, M. MAGI, A. SAMSON, G. ENGLHARDT and A. R. GRIMMER, J. Amer. Chem. Soc. 102 (1980) 4889.
- 21. S. KOMARNENI, R. ROY and M. R. DELLA, *Cem. Concr. Res.* **16** (1986) 47.
- 22. J. BENSTED, *ibid.* **17** (1987) 683.
- 23. S. KOMARNENI and M. J. TSUJI, Amer. Ceram. Soc. 72(9) (1989) 1668.

Received 18 July and accepted 27 October 2000